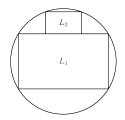


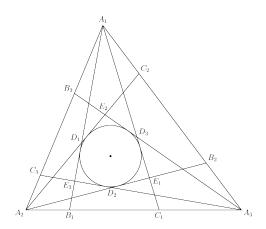
- 1. Let \triangle ABC be an equilateral triangle with side length 6. Points D, E, and F lie on sides AB, BC, and CA respectively such that \triangle DEF is equilateral and has area equal to \triangle FAD. Compute the side length of \triangle DEF.
- 2. We have a 5 × 5 × 5 cube made up of 1 × 1 × 1 cardinal red and transparent pieces. When looking at the cube, we always see a cardinal red piece if it is behind any transparent pieces. When viewing each face straight-on, we can see the letters S, M, T on the top, front, and right side, respectively (as arranged in the diagram). Compute the maximum possible number of cardinal red pieces within this cube.

Note: cardinal red pieces are rendered black on your printed copy.

- 3. Let Ω be a circle. Draw two radii r_1 and r_2 of Ω that form a 40° angle, and let ω be a circle which is tangent to both of these radii and internally tangent to Ω . Let ω be tangent to Ω and r_1 at A and B, respectively, and let r_1 meet Ω at C. Compute $\angle ABC$.
- 4. In the diagram shown, the rectangles L_1 and L_2 are similar, where corresponding sides of L_1 are $\frac{5}{2}$ times the length of the corresponding sides of L_2 . Rectangle L_1 is inscribed in a circle ω , and rectangle L_2 meets ω at two points, with its long side lying on the long side of L_1 . If r and s are the side lengths of L_1 , where s>r, compute $\frac{s}{r}$.



- 5. Let α and β be two angles in $[0, 2\pi)$, and let $A = (\cos \alpha, \sin \alpha)$, $B = (\cos \beta, \sin \beta)$ and $C = (\cos \alpha + \cos \beta, \sin \alpha + \sin \beta)$. If one of the points has coordinates $(\frac{32}{25}, \frac{24}{25})$, compute the area of $\triangle ABC$.
- 6. Let \mathcal{P} be a parabola with its vertex at A, and let B and C be two other distinct points on \mathcal{P} . The focus F of \mathcal{P} is the centroid of \triangle ABC. If FB=3, compute the area of \triangle ABC.
- 7. Triangle \triangle $A_1A_2A_3$ has side lengths $A_1A_2=13$, $A_2A_3=14$, $A_3A_1=15$. Points B_i and C_i lie on $\overline{A_{i+1}A_{i+2}}$ such that $\angle B_iA_iC_i=30^\circ$ for $1\leq i\leq 3$, where $A_4=A_1$ and $A_5=A_2$. For $1\leq i\leq 3$, let D_i be the intersection of $\overline{A_iB_i}$ and $\overline{A_{i+1}C_{i+1}}$ and E_i the intersection of $\overline{A_iC_i}$ and $\overline{A_{i+1}B_{i+1}}$, where $A_4=A_1,B_4=B_1,C_4=C_1$. If $D_1E_3D_2E_1D_3E_2$ forms a convex hexagon with an inscribed circle of radius r, compute r.



- 8. Let PABCD be a pyramid with rectangular base ABCD and $\frac{\cos \angle APC}{\cos \angle BPD} = 2$. If BP = 4 and DP = 9, compute AP + CP.
- 9. Let ABCD be a square centered at E with side length 10. Point P lies on the extension of line CD past point D. There exists a point Q on line AP such that lines EQ, BP, and AD are concurrent. If $EQ = 7\sqrt{2}$, compute |AQ DQ|.

- 10. Let AFDC be a rectangle. Construct points E and B outside of AFDC such that AB = BC = DE = EF = 45 and ABCDEF is a convex hexagon. Let $\mathcal E$ be an inscribed ellipse tangent to sides AB, BC, CD, DE, EF, FA at points U, V, W, X, Y, and Z, respectively. Points F_1 and F_2 with F_1 closer to B are the foci of $\mathcal E$ satisfying $\triangle ABC \cong \triangle F_1WF_2 \cong \triangle DEF$. Let Q be on line CD such that $F_1Y \perp ZQ$. Compute the area of quadrilateral F_1QYZ .
- TB. This is an estimation question used for tiebreaking purposes. Ties on this test will be broken by absolute distance from the correct answer to this question.

The incircle of triangle ABC is tangent to AB at F such that AF = 5, BF = 12, and the area of the triangle is 20250.

Estimate $\cos \angle ABC$ in the decimal form 0.abcdefgh where a,b,c,d,e,f,g,h are decimal digits each between 0 and 9, inclusive.